CNC3D-printer.com

CNC3D-printer.com


Статьи 3Dprinter Поиск МагазинРегистрация


Моделирование методом послойного наплавления (FDM)




Моделирование методом послойного наплавления (англ. Fused deposition modeling (FDM)) – технология аддитивного производства, широко используемая при создании трехмерных моделей, при прототипировании и в промышленном производстве. Быстрое прототипирование облегчает повторное тестирование с последовательной, пошаговой модернизацией объекта. Быстрое производство служит в качестве недорогой альтернативы стандартным методам при создании мелкосерийных партий.

Технология FDM подразумевает создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих контуры цифровой модели.

Технология печати методом послойного наплавления FDM была разработана С. Скоттом Трампом в конце 1980-х и представлена на рынке компанией Stratasys, начиная с 1990 г. Оригинальный термин "Fused Deposition Modeling" и аббревиатура FDM являются торговыми марками компании Stratasys. Энтузиасты 3D-печати, участники проекта RepRap, придумали аналогичный термин "Fused Filament Fabrication" ("Производство методом наплавления нитей") или FFF для использования в обход юридических ограничений. Термины FDM и FFF эквивалентны по смыслу и назначению.

Производственный цикл начинается с обработки трехмерной цифровой модели. Модель в формате .stl делится на слои и ориентируется наиболее подходящим образом для печати. При необходимости генерируются поддерживающие структуры, необходимые для печати нависающих элементов.

Модель, производится выдавливанием ("экструзией") и нанесением микрокапель расплавленного термопластика с формированием последовательных слоев, застывающих сразу после экструдирования.

Моделирование методом послойного наплавления (FDM)

Пластиковая нить (филамент) разматывается с катушки и вводится в экструдер – устройство, оснащенное механическим приводом для подачи нити, нагревательным элементом для плавки филатмента и соплом, через которое осуществляется непосредственно экструзия. Нагревательный элемент служит для нагревания сопла, которое в свою очередь плавит филамент и подает расплавленный материал на поверхность рабочего стола (для первого слоя) или на предыдущий слой, соединяясь с ним. Как правило, верхняя часть сопла наоборот охлаждается с помощью вентилятора для создания резкого градиента температур, необходимого для обеспечения плавной подачи материала.

Экструдер (также называемый "печатной головкой") перемещается в горизонтальной плоскости и постепенно наносит нужный слой, после чего происходит вертикальное перемещение (чаще всего опусканием стола, но есть модели, в которых приподнимается экструдер) на толщину слоя и процесс повторяется до тех пор, пока модель не будет построена полностью.

FDM-принтеры в качестве материалов для печати используют термопластики, в виде тонких нитей, намотанных на катушки. Ассортимент пластиков весьма широк. Одними из самых популярных пластиков для печати являются PLA-пластик, ABS-пластик. PLA-пластик – это материал который изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании.

Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно применение такого материала как поливиниловый спирт (PVA-пластик). Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы.

Также возможно применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов. Так, Laywoo-D3 на 40% состоит из натуральной древесной пыли, что позволяет печатать "деревянные" изделия, включая мебель. Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы. Связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей.

FDM является одним из наименее дорогих методов печати, что обеспечивает растущую популярность бытовых принтеров, основанных на этой технологии. В быту 3D-принтеры, работающие по технологии FDM, могут применяться для создания самых разных объектов целевого назначения, игрушек, украшений и сувениров.

К достоинствам FDM технологии можно отнести:

  • простоту в эксплуатации, поэтому даже непрофессионалы могут легко справиться с печатью;
  • в процессе моделирования создаются качественные детали с высокой детализацией сложных геометрических форм и полостей;
  • достаточная дешевизна расходных материалов;
  • большой ассортимент цветов и типов пластика.

К недостаткам данной технологии можно отнести:

  • невысокую скорость работы (высокой скоростью работы не могут похвастать и другие технологии. Для построения крупных и сложных моделей требуются много времени);
  • небольшая разрешающая способность как по горизонтали, так и по вертикали, что приводит к более или менее заметной слоистости поверхности изготовленной модели;
  • проблемы с фиксацией модели на рабочем столе (первый слой должен прилипнуть к поверхности платформы, но так, чтобы готовую модель можно было снять). Эту проблему решают разными способами: подогревом рабочего стола; нанесением на него различных покрытий;
  • для нависающих элементов требуется создание поддерживающих структур, которые впоследствии приходится удалять. Даже с учетом этого некоторые модели попросту невозможно сделать на FDM-принтере за один цикл и приходится разбивать их на детали с последующим соединением склейкой или другим способом.

 

Таким образом, для очень многих образцов, изготовленных по технологии FDM, потребуется более или менее сложная финишная обработка, которую сложно или невозможно механизировать, поэтому в основном она производится вручную. Есть и менее очевидные недостатки, например, зависимость прочности от направления, в котором прикладывается усилие. Так, можно сделать образец достаточно прочным на сжатие в направлении, перпендикулярном расположению слоев, но вот на скручивание он будет гораздо менее прочным: возможен разрыв по границе слоев.

Другой момент в той или иной мере присущ любой технологии, связанной с нагревом: это термоусадка, которая приводит к изменению размеров образца после остывания. Конечно, тут много зависит от свойств используемого материала, но порой нельзя примириться даже с изменениями в несколько десятых долей процента.

Технология может показаться безотходной только на первый взгляд. И речь не только о поддерживающих структурах в сложных моделях, немало пластика уходит в отходы даже у опытного оператора при подборе оптимального для конкретной модели режима печати. Даже при таком количестве проблем эта технология сейчас очень популярна. Для этого есть ряд причин.

Главная и определяющая причина – цена как на сами принтеры, так и на расходные материалы к ним. Первым важным толчком в процессе продвижения FDM-принтеров «в массы» стало истечение в 2009 году срока действия патентов. Вследствие чего за пять лет цены на такие принтеры снизились более чем на порядок, а если рассмотреть крайности (самые дорогие до 2009 года и самые дешевые сегодня), то и на два порядка: цена на самые дешевые принтеры китайского производства сегодня составляет всего 300-400 долларов — правда, скорее всего покупатель в них моментально разочаруется. Более приличные принтеры начального уровня сейчас имеют цену уже ближе к $1200-1500.

Вторым немаловажным фактором стало появление проекта RepRap, или Replicating Rapid Prototyper – самовоспроизводящийся механизм быстрого прототипирования. Самовоспроизведение касается изготовления на уже сделанном принтере частей для другого подобного принтера – конечно, не всех, а лишь тех, которые можно создать в рамках данной технологии, всё прочее приходится покупать. И оно не было самоцелью проекта: главной задачей стало создание максимально дешевых моделей принтеров, доступных даже частным энтузиастам, не обремененным излишком денег, но желающим попробовать свои силы в 3D-печати. Более того, самовоспроизводящимися (в сколь-нибудь заметной части всех деталей) были и есть далеко не все прототипы, созданные в рамках RepRap.

Моделирование методом послойного наплавления (FDM)

Конечно, создаваемые таким образом принтеры чаще всего далеки от совершенства даже в рамках технологии FDM, но они позволяют с минимальными финансовыми затратами создать вполне работоспособный аппарат. Нужно отметить: сегодня вовсе не обязательно искать обладателя принтера, чтобы напечатать возможные детали, и бегать по магазинам в поисках остального. Предлагаются полные наборы для самостоятельной сборки принтера, так называемые DIY kits (от «Do It Yourself» – сделай это сам), которые позволяют и заметно сэкономить, и избежать лишней беготни и хлопот, да к тому же содержат подробные инструкции по сборке. Но есть простор и для тех, кто не хочет замыкаться в рамки готовых конструкций и желает внести в них что-то свое: есть масса предложений по любым отдельным комплектующим для подобных принтеров.

Еще одна положительная сторона развития проекта RepRap — появление и совершенствование различного программного обеспечения для работы с подобными 3D-принтерами, причем распространяемого свободно. В этом немаловажное отличие от аппаратов, выпускаемых именитыми производителями, которые работают только с собственным ПО.

В принципе, проект не замыкается на технологии FDM, но пока именно она является наиболее доступной, равно как наиболее доступным материалом является пластиковая нить, которая и используется в подавляющем большинстве принтеров, создаваемых на базе разработок RepRap.

Широкое распространение FDM-принтеров привело к увеличению спроса на расходные материалы к ним; предложение не могло не последовать за спросом, и произошло то же самое, что и с самими принтерами: цены рухнули. Если на старых интернет-страницах, посвященных FDM-технологиям, встречаются упоминания цен на уровне 2-3 и даже более сотен евро за килограмм пластиковой нити. То сейчас повсеместно речь идет о десятках евро, и лишь на новые материалы с необычными свойствами цена может достигать сотни долларов или евро за килограмм. Правда, если раньше продавались в основном «фирменные» материалы, то теперь зачастую предлагается нить непонятного происхождения и неопределенного качества, но это неизбежно сопутствует популярности.

Помимо цены, у FDM-принтеров есть другие достоинства, связанные с возможностями технологии. Так, очень легко оснастить принтер второй печатающей головкой, которая может подавать нить из легко удаляемого материала для создания поддержек в сложных моделях. Внеся краситель при изготовлении пластиковой нити, можно получать различные, очень яркие цвета.

Технология FDM даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Печать по технологии FDM выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Для печати по технологии FDM используется два различных материала – первый (основной), из него будет состоять готовая деталь, и вспомогательный, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой. Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Моделирование методом послойного наплавления (FDM)

Пластиковая нить может быть двух стандартных диаметров: 1,75 и 3 мм. Естественно, они не взаимозаменяемы, и выбор нужного диаметра следует уточнять по спецификации принтера. Поставляется пластик на катушках и измеряется не длиной, а весом. Для FDM-принтеров некоторых производителей (например, CubeX от 3D Systems) нужно покупать не катушки, а специальные картриджи с нитью, которые в пересчете на килограмм обходятся заметно дороже, но производитель гарантирует качество материала.

Для каждого типа материала должны быть известны рабочая температура, до которой должен нагреваться материал в печатающей головке, и температура подогрева рабочего стола (платформы) для лучшего прилипания первого слоя.

В наши дни популярностью пользуются не только автоматические настольные FDM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов. Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло.

 


Вы можете стать первым